实验室负责人
鲁鹏
副教授,博士生导师
鲁鹏,男,1978年9月生于湖北省武汉市。2006年7月获得中国科学院自动化研究所博士学位,2008 年到2010 年在北京大学人机交互与多媒体实验室从事博士后研究,2010年至今受聘于北京邮电大学计算机学院。
主持纵向项目包括:国家自然科学基金项目"面向概念设计的虚实融合环境交互技术研究",博士后基金项目"自然的三维概念草图绘制技术研究";作为负责人完成国家863项目"基于双目立体视觉的自然交互技术"的研究工作;同时,主持多项横向课题的研究工作。
指导本科生获得2011年“全国大学生智能设计竞赛”一等奖; 2013年获得“北京邮电大学第十一届教学观摩评比”二等奖。 指导本科生获得2016年“全国大学生智能设计竞赛”二等奖。
研究方向:机器学习、计算机视觉、人机交互
承担课程:机器视觉、多模态信息处理、智能机器人
工作地点:北京邮电大学新科研楼812房间
电子邮箱:lupeng@bupt.edu.cn
主讲课程
带你走进计算机视觉与深度学习的大门
计算机视觉之三维重建篇-精简版
什么是摄像机?它的成像原理是什么?单张图像可以重建场景吗?什么是多视图几何?它有什么性质?如何通过图像重建3d场景?这门课会代领同学们进入视觉重建技术的世界,不再囿于"一张图像"的 平面视角。
计算机视觉基础
本课程将着眼于计算机视觉的基本框架,带领大家从最基础的必备图像处理技巧开始, 首先探索图片基本信息(诸如边缘、尺度不变的特征点,直线或基本图形的拟合、纹理等)的提取和应用。 然后,我们将一起着眼于计算机视觉的基本任务的解决方法,即分割问题、识别问题、检测问题。 同时,本课程也会带领大家进入立体视觉的世界,以运动恢复结构为例打开3D大门。
计算机视觉与深度学习
什么是深度学习?什么是神经网络?神经网络都有哪些结构?能够完成计算机视觉中的什么任务? 本课程将从基本的线性分类器、全连接神经网络、卷积神经网络开始,步入深度学习的世界。 探究如何利用他们解决分类、分割、检测问题。 同时,也将讲到网络的可视化的方法。除了常用的判别模型,我们也会讲到生成模型, 比如VAE、GAN等的模型结构、论文解读和应用。
成果概览
- Zhaoran Zhao, Peng Lu∗, Xujun Peng, Wenhao Guo. Self-supervised Photographic Image Layout Representation Learning. IEEE Transactions on Multimedia(TMM), 2025(ACCEPTED).
- Wenhao Guo, Peng Lu∗, Xujun Peng, Zhaoran Zhao, Learnable adaptive bilateral filter for improved generalization in Single Image Super-Resolution, Pattern Recognition(PR), Volume 162,2025,111396, ISSN 0031-3203, https://doi.org/10.1016/j.patcog.2025.111396.
- Xin Ma, Jiguang Zhang, Peng Lu∗, Shibiao Xu, Chengwei Pan, Novel View Synthesis under Large-Deviation Viewpoint for Autonomous Driving, Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI), Philadelphia, Pennsylvania, USA, 2025-03.
- Wenhao Guo, Peng Lu∗, Xujun Peng, Zhaoran Zhao, Ji Qiu, XiangTao Dong, BCSCN: Reducing Domain Gap through Bézier Curve basis-based Sparse Coding Network for Single-Image Super-Resolution, ACM International Conference on Multimedia (ACM MM), pp.4881 - 4889, Melbourne, Australia, 2024-10.
- Ji Qiu, Peng Lu∗, Xujun Peng, Wenhao Guo, Zhaoran Zhao, XiangTao Dong, Learning Realistic Sketching: A Dual-agent Reinforcement Learning Approach, ACM International Conference on Multimedia (ACM MM), pp. 5921 - 5929, Melbourne, Australia, 2024-10.
- Xiangtao Dong, Xin Ma, Chengwei Pan, Peng Lu∗. A review of neural radiance fields for outdoor large scenes, Journal of Graphics, Volume 4: 631-649, 2024.
- Wang Yin, Peng Lu, Xujun Peng, Zhaoran Zhao, Jinbei Yu. Hierarchical Color Fusion Network (HCFN): Enhancing exemplar-based video colorization, Neurocomputing, Volume 598, 2024.
- Wang Yin, Peng Lu∗, Xujun Peng. ColorFlow: A Conditional Normalizing Flow for Image Colorization[C]// International Conference on Acoustics, Speech and Signal Processing(ICASSP), 2024. (ORAL)
- Shibiao Xu, Shunpeng Chen, Rongtao Xu, Changwei Wang, Peng Lu, Li Guo. Local feature matching using deep learning: A survey[J]. Information Fusion,2024, 107.
- Wei Wang, Peng Lu∗, Xujun Peng, Wang Yin, Zhaoran Zhao. RLSCNet: A Residual Lineshaped Convolutional Network for Vanishing Point Detection[C]// International Conference on Multimedia Modeling(MMM), 2023:103-114.
- Wang Yin, Peng Lu∗, Zhaoran Zhao, Xujun Peng. Yes, “Attention Is All You Need”, for Exemplar based Colorization[C]// ACM International Conference on Multimedia(ACM MM), 2021:2243-2251.
- Peng Lu, Hao Zhang, Xujun Peng, Xiaofu Jin. Learning the Relation Between Interested Objects and Aesthetic Region for Image Cropping[J]. IEEE Transactions on Multimedia(TMM), 2021, 23:3618-3630.
- Peng Lu, Jiahui Liu, Xujun Peng, Xiaojie Wang. Weakly Supervised Real-time Image Cropping based on Aesthetic Distributions[C]// ACM International Conference on Multimedia(ACM MM), 2020:120-128. (ORAL)
- Peng Lu, Jinbei Yu, Xujun Peng, Zhaoran Zhao, Xiaojie Wang. Gray2ColorNet: Transfer More Colors from Reference Image[C]// ACM International Conference on Multimedia(ACM MM), 2020:3210-3218.
- Peng Lu, Hao Zhang, Xujun Peng, Xiang Peng. Aesthetic Guided Deep Regression Network for Image Cropping[J]. Signal Processing: Image Communication, 2019, 77:1-10.
- Peng Lu, Xujun Peng, Jinbei Yu, Xiang Peng. Gated CNN for Visual Quality Assessment based on Color Perception[J]. Signal Processing: Image Communication, 2019, 72(C):105-112.
- Lu P, Yu J , Peng X . Deep Conditional Color Harmony Model for Image Aesthetic Assessment[C]// 24th International Conference on Pattern Recognition. 2018.
- Peng Lu, Caixia Yuan, Ruifan Li, Xiaojie Wang, Xujun Peng. Image Color Harmony Modeling through Neighbored Co-occurrence Colors[J]. Neurocomputing, 2016, 201:82-91.
- Peng Lu, Xujun Peng, Ruifan Li, Xiaojie Wang. Towards Aesthetics of Image: A Bayesian Framework for Color Harmony Modeling[J]. Signal Processing: Image Communication, 2015, 39(C):487-498.
- Zhijie Kuang, Peng Lu, Xiaojie Wang, Xiaofeng Lu. Learning Self-adaptive Color Harmony Model for Aesthetic Quality Classification[J]. The International Society for Optical Engineering, 2015, 9443.
- Peng Lu, Zhijie Kuang, Xujun Peng, Ruifan Li. Discovering Harmony: A Hierarchical Colour Harmony Model for Aesthetics Assessment[C]// Asian Conference on Computer Vision(ACCV), 2014:452-467.
- Peng Lu, Xujun Peng, Xinshan Zhu, Ruifan Li. An EL-LDA based General Color Harmony Model for Photo Aesthetics Assessment[J]. Signal Processing, 2014.